Motion

Before You Read

Before you read the chapter, respond to these statements.

1. Write an \mathbf{A} if you agree with the statement.
2. Write a \mathbf{D} if you disagree with the statement.

Before You Read	Motion
	• Distance and displacement are the same thing.
	• Velocity and speed are the same.
	• Whenever an object accelerates, its speed increases.

FOLDABLES Study Organizer

Construct the Foldable as directed at the beginning of this chapter.

Science Journal

Write a paragraph descibing three rides in an amusement park and how rides cause you to move.

Motion

Section 1 Describing Motion

Skim Section 1 of the chapter. Read the headings and illustration captions. Write three questions that come to mind.
1.
2.
3. \qquad
Review
Vocabulary Define meter to reflect its scientific meaning.
\qquad
New
Vocabulary Use your book to define the words below.
motion
distance
displacement
speed

Contrast the average speed and the instantaneous speed of a runner in a race.
average speed
instantaneous speed \qquad
\qquad
\qquad
\qquad

Academic

(Vocabulary) Use a dictionary to define position with its scientific meaning. position

Section 1 Describing Motion (continued)

CMain Idea

Motion and Position

I found this information on page \qquad -.

Speed
I found this information on page \qquad

Draw a winding path that covers a distance of 70 miles and finishes with a displacement 20 miles southwest of the starting point. Label your diagram with the distance and direction traveled.

Analyze the formula for speed by looking at the diagram and filling in the prompts.

Put your finger over the s on the diagram. Now write the formula for speed. \qquad

Put your finger over the d on the diagram. Write the calculation to find distance when you know speed and time. \qquad
Prove to yourself that these formulas are correct by checking the units.
speed (units of or \quad) $=\frac{\text { distance (units of } \quad \text { or } \text {) }}{\text { time (units of or) }}$ distance (units of ___) $=$ speed (units of $) \times$ time (units of ___)

Note that the units always turn out the same on both sides of the equation.

Section 1 Describing Motion (continued)

Main Idea

Graphing Motion

I found this information on page \qquad —.

Details

Create a graph to show the progress of a runner who runs a 1 -kilometer race in 3 minutes. The runner gets off to a fast start, runs the middle of the race at a more moderate pace, and then sprints to the finish.

Graphing Checklist:

- title
- scale on x-axis
- units on x-axis
- label on x-axis
- scale on y-axis
- units on y-axis
- label on y-axis

Analyze the following statement. "A boat traveled at $10 \mathrm{~km} / \mathrm{h}$ for one hour, then at $13 \mathrm{~km} / \mathrm{h}$ for two hours, and finally at $11 \mathrm{~km} / \mathrm{h}$ for another hour. The average speed over the whole trip was $15 \mathrm{~km} / \mathrm{h}$." Support your analysis with a calculation.
\qquad
\qquad
\qquad
\qquad
\qquad

